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Bifurcations and chaos in an array of forced vortices

R. Braun, F. Feudel, and N. Seehafer
Institut fir Theoretische Physik und Astrophysik, UniversPatsdam, Postfach 601553, D-14415 Potsdam, Germany
(Received 2 December 1996

We have studied the bifurcation structure of the incompressible two-dimensional Navier-Stokes equations
with a special external forcing driving an array ok8® counterrotating vortices. The study has been motivated
by recent experiments with thin layers of electrolytes showing, among other things, the formation of large-scale
spatial patterns. As the strength of the forcing or the Reynolds number is raised the original stationary vortex
array becomes unstable and a complex sequence of bifurcations is observed. The bifurcations lead to several
periodic branches, torus and chaotic solutions, and other stationary solutions. Most remarkable is the appear-
ance of solutions characterized by structures on spatial scales large compared to the scale of the forcing. We
also characterize the different dynamic regimes by means of tracers injected into the fluid. Stretching rates and
Hausdorff dimensions of convected line elements are calculated to quantify the mixing process. It turns out that
for time-periodic velocity fields the mixing can be very effecti/81063-651X97)04606-(

PACS numbes): 47.20.Ky, 47.52+j, 47.27.Cn, 47 54:r

[. INTRODUCTION structure and in the temporal evolution of the flow resulting
from variations of the Reynolds number and modeled the
The transition from simple laminar to turbulent fluid mo- observed phenomena by means of a one-dimensional chain
tions upon changes of parameters such as the Reynolds nu@fcoupled oscillators. Numerical investigations based on the
ber, though continually and intensively investigated bytwo-dimensional NSE and aimed at modeling these experi-
means of sophisticated experiments as well as analyticalljnents were done by Finat al. [15,16|. In particular with
and numerically, is still far from being completely under- respect to the first instabilities their results show qualitative
stood. The experiments exhibit a variety of different transi-coincidences with the experimental observations.
tion scenarios and each of them requires its own theoretical [N this paper we numerically examine the dynamics of the
explanation. two-dimensional NSE with an external forcing driving an
For more than three decades efforts have been made ﬁfl’ay of VOI’ticeS, fOCUSing attention on the bifurcation behav-
analyze the bifurcation behavior of a special two-ior. In Sec. Il we introduce equations and forcing and briefly
dimensional viscous ﬂOW, the so-called K0|mogorov ﬂOW, describe the numerical method. Then in Sec. Il we present
and to understand its transition to chaos as the Reynold&e bifurcation scenario and explain the qualitative properties
number is raised. In the Kolmogorov flow, which is pro- Of different dynamical branches. In Sec. IV we study the
duced by the forcing of just one Fourier mode, the velocity is-@grangian dynamics and try to quantify the mixing process
everywhere parallel or antiparallel to a given direction per-PY suitable measures. Finally, Sec. V gives a short discussion
pendicular to which it varies sinusoidally. An early analytical Of the role of the boundary conditions.
estimation of its stability is due to Meshalkin and Sipalj.
A recent consideration of the stability problem including lin- Il. BASIC EQUATIONS AND FORCING
ear friction and confinement effects can be foundidh ] ] ) ] ]
A systematic investigation of the bifurcation structure of e study the incompressible two-dimensional NSE in the

truncations to the two-dimensional incompressible Navier/€scaled form

Stokes equation$NSE’s) with an external forcing of the v

Kolmogorov type is reported in a series of papers by France- - T V)v=V?—Vp+f, (1)
schini and his co-workerg3—-6]. Lee[7] studied a modified

version of the Kolmogorov flow, generated by forcing a dif- V-v=0, 2

ferent Fourier mode, and found a different scenario for thewherev is the fluid velocity field ang the thermal pressure
transition to chaos. The flow studied by Lee has recentlyl_ y P )

been systematically investigated by Feudel and SeehaferfIe external forcd is chosen to be

[8,9], who applied special numerical bifurcation-analysis .
techniques. fo ( smklxcoskzy). 3
The present paper is motivated by a number of experi- —CcoKxsink,y

ments showing the formation of large-scale patterns in ap-

proximately two-dimensional fluids, apparently as the resulDue to the rescaling of the NSE to typical length and time
of inverse energy cascades. So Sommgt® investigated scales all quantities are nondimensional; the explicit form of
the transition to turbulence produced by instabilities in athe rescaling transformation may be found in R&f. The
square array of electrically driven vortices. In other experi-two constants in Eq(3) are fixed tok;=k,=4, so that the
ments, Tabelinget al. [11-14 studied a linear chain of external force drives an array 088 counterrotating eddies.
forced vortices. They described the variations in the spatiafFor the sake of simplicity we impose periodic boundary con-
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0.0

TABLE |. Different solution branches.

Branch Stability interval Remarks

steady | f<402.8 8x 8 vortex array
cycles 402.&f<610.9 heteroclinic cycles
chaos | 610.9.f<679 Shilnikov-like chaos
period | 679<f<803.3

torus 769.3<f<825.9

period I 825.9<f<857.6

steady |l 857.6f<961.7 large-scale steady state
period Il 961.<f<1022.8

chaos Il 1022.8 f

[ll. BIFURCATION SCENARIO

Due to the periodic boundary conditions and the form of
the forcing, Eqs(1) and(4) are equivariant with respect to a
special transformation group, which can be represented as a
semidirect sunj17] in the form

0 1 2 3 4 5 0 G=Dy+(Z4XZ4XZ,), (6)

=

whereD, denotes the eight-element dihedral grodp,the

four-element cyclic group, and, the reflection group. As

will be seen, the symmetry group has an essential influence

" . . ) on the bifurcations.

dmons and con'S|der Fhe dynamics of the fluid on a square For a weak forcing, i.e., for a small value bf the 8x 8

with the normalized side length=2. _ ___array of counterrotating vorticésee Fig. 1is the only time-
When using the rescaled form of the NSE with the forcmgasymptotic state. Here only the forced modes are excited and

given by Eq.(3), the scalarf in Eq. (3), which corresponds {he vorticity can be expressed analytically in the form
to the strength of the forcing, is the only free parameter an

is used as bifurcation parameter. Its relation to the Reynolds ) .
number may be roughly estimated as follows. For a weak w(X,y)= ZS'“(4X)S'”(4V)- @)
forcing the nondimensional velocifa typical value of it is
determined by a balance between the forcing and viscoushis steady solution is symmetric with respect to the whole
terms in Eq.(1), so thatv~I2%f, wherel is the scale over group G, and by means of the patterns seen in Fig. 1 the
which f varies,| ~ 1/\k?+ k3. From the rescaled form of the group structure is easily understogubte that neighboring
NSE one then obtains Rd3f for the Reynold number. For Vortices have opposite sense of rotajiofhe elements of
strong forcing, on the other hand, the forcing term in @g. D4 correspond to rotations and reflections of the square, in
is approximately balanced by the inertial term and one exSOme cases combined with a shift by4 parallel to one of
pects Re=1%3%12 to be a better estimate. the boundaries. The subgrougs and Z,, respectively, are

In our numerical computations we did not directly inte- generated by pure translations, for which the pattern remains
grate Eq.(1) but rather the corresponding equation for theinvariant due to the periodicity. _ _
vorticity w=Vxv. By the restriction to two spatial dimen-  In the following the bifurcations observed for increasing

sions this equation is reduced to one scalar equation for th@€ forcing parametef as well as the resulting solution
only nonvanishing componeri= w, : branches are described. An overview of the different solution
branches is given in Table | and a schematic bifurcation dia-

dw gram in Fig. 2. The primary steady stateady |, described

Eﬂv'V)w=V2w+f(k1+kz)Sink1XSink2Y- (4)  aboveé loses its stability in a special bifurcation at

FIG. 1. Streamlines fof =362 (steady ).

For w a Fourier expansion according to Period IT Period III
Chaos I

A~ . /\/\_-___..
w= E | wk(t)eu(kxwkyy)' k=(kx.ky), (5 Steady II W
x 1Ky €
Steady I Chaos 1

is used, leading to an infinite system of ordinary differential ~ ——------ AMV-----
equations for the real and imaginary parts of the Fourier Cycles Period
components&)k. We have numerically studied a finite-
dimensional truncation of this system by means of a pseu- 500 1000  Forcing
dospectral method, using a dealiased code with a resolution
of 32X 32 grid points in real space. FIG. 2. Schematic bifurcation diagram.

Torus
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FIG. 3. Projection of the heteroclinic cycle fée=475. Filled FIG. 5. Projection of the trajectory fdr=611 (chaos J.

circles mark the positions of fixed points.

partly broken. Symmetry breakings connected with the ap-
f=402.8, where four real eigenvalues of the Jacobian matri)pearance of heteroclinic cycles are a typical phenomenon in
become zero. As a result of this symmetry-breaking bifurcasystems with symmetrj/18].
tion an asymtotic heteroclinic cycle is born. This cycle con-  The heteroclinic orbits connecting the fixed points domi-
sists of 16 unstable fixed pointsteady statgs which are  nate the dynamics of the system in a large parameter range.
connected by their stable and unstable manifolds. A projecThen the cycle undergoes a complex bifurcation sequence,
tion of the heteroclinic cycle onto the plane spanned by th&vhich we did not investigated in detail. The cycle seems to
real parts of two of the Fourier modes @fis shown in Fig.  decay into several smaller heteroclinic cycles. fAt610.9
3. The fixed points are marked by filled circles, some of themhe system develops a chaotic dynaniidsaos J; the calcu-
coinciding in the projection. In numerical simulations of the |ation of the largest Lyapunov exponents yields one slightly
long-term behavior we observed the trajectory to stay a longositive exponent. In Figs a projection of the trajectory for
time in the vicinity of one of the fixed points and then to =611 is shown. It is strongly indicative of a Shilnikov-type
switch rapidly to the next one, in the course of this slowly chaos. Also remnants of the heteroclinic cycle shown in Fig.
approaching the heteroclinic orbit. Theoretically, the time3 are still visible. This behavior is found up te=679, where
period of the approximate cycle should go to infinity, but duethe dynamics of the chaotic attractor is replaced by a periodic
to numerical errors it tyipically reached maximum valuesmotion (period ). The topological structure of the corre-
T~10". In Fig. 4, for one of the fixed points in the cycle, the sponding streamline portrait is similar to that in Fig. 4. For
velocity streamlines are shown. The original symmetry isincreasing Reynolds number the basin of attraction of this

periodic branch shrinks and finally disapperars for

NI /ZaNira N\ ey 2SN I f=2803.3.
6 M@@ U@\@ @é As is seen in Fig. 2, for higher Reynolds numbers another
L @ C main branch dominates the dynamics of the system. So we
@ @ @) O ] have found a further steady stdteady 1), stable within the
parameter interval 857<6f <961.7 and corresponding to a
qualitatively different solution structure in physical space.
The velocity streamlines in Fig. 6 show that now motions on
larger scales, comparable with the size of the system, be-
come dominant and determine the spatial structure of the
flow. This branch was traced using continuation techniques,
both for decreasing and for increasing Reynolds numbers. At
both ends, af =857.6 andf =961.7, Hopf bifurcations were
observed, leading to periodic orbigseriod Il and period II).
With a further decrease df a secondary Hopf bifurcation
leads to a torus solutioftorus, which is stable only within a
small parameter interval and coexists partly with the periodic
branch period I, which is characterized by small-scale spatial
strucures.
" ek ; When tracing the period 1ll branch towards higher Rey-
0 1 2 3 4 5 6 nolds numbers, chaotic motions are observedfferl022.8
(chaos 1). The occurrence of chaos has been verified by
X calculating the largest Lyapunov exponents for selected val-
ues of the bifurcation parameter, using an algorithm of Shi-
FIG. 4. Streamlines fof =475 (fixed point in the heteroclinic mada and Nagashin{d9]. Figure 7 shows fof =1041 the
cycle) cumulative values of the six largest Lyapunov exponents
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IV. MIXING AND LAGRANGIAN TURBULENCE

In this section we try to distinguish between different dy-
namic regimes by means of tracers injected into the fluid,
with the aim of making feasible a comparison of theoretical
results with experimental observations. For a steady flow the
pathlines of tracers coincide with the streamlines and provide
a direct visualization of the velocity field. In the time-
dependent regimes the situation is much more complicated.
The differential equations for the determination of the path-
lines is now nonautonomous,

x=v(x,t), (8

for the normal space variables|t is known that already for
simple periodic flows the pathlines can show a very compli-
cated, wrinkled, and chaotic forfi21], a phenomenon also
termed Lagrangian turbulence. The motion of tracers in-
jected into the fluid in the form of a blob or a straight line is
the subject of the theory of mixing and transport processes.
Comprehensive overviews of this topic are given in the
monograph of Otting22] and in[23].

Mixing consists basically of the stretching and folding of
fluid elements, quantified by the stretching rate and by the
m Hausdorff dimension, respectively. The stretching of an in-

' finitesimal line element leads two the definition of the largest

Lyapunov exponent. By contrast, we have studied the

stretching properties of finite filaments. It is known that the
in dependence on the integration time. A good convergencstretching rates of finite line elements are generally larger
is demonstrated, as well as that three of the exponents athan the largest Lyapunov expong@#], but there is a quali-
positive. tative coincidence in that an exponential or polynoniéag.,

One of the remaining open problems is the transition fromliinear growth with time is always common to both quanti-
the period Il periodic branch to chaos. We could not resolvdies.

a periodic-doubling cascade and numerical experiments indi- In practice we injected a straight line of tracer particles
cated that in the vicinity of the transition point transientinto the fluid and followed their time evolution by solving
chaos occurs. For a value of the bifurcation parametethe NSE and Eq(8) for the pathlines simultaneously. An
slightly below the transition value, a trajectory starting in the@daptive refinement technique has been used to get an equi-
neighborhood of the chaotic set moves for a long time seendistant distribution of tracers on th_e_ line, limiting the maxi-
ingly chaotically, and then suddenly settles down to a peri/NUm number of particles to f0Additionally, we calculated
odic orbit. Such a behavior can be caused by a &, the length of the line in every time step. These calculations
but more detailed investigations, such as the determination gf€e_done for the large-scale steady stésteady II,

a scaling law for the transient time, are still under way. IfuTic?r?Szt’o?uge;igd;g zs)tat(ganedrio; !:{z;oﬁc?gt?r)z’arfzgcﬁz)ar:ss TIO

f=1041). The initial line element has the lengdig 0.3 and
has been placed near the center of the square.

Figure 8 shows the shape of this line after simulation of a
time intervalAt=1.0 and demonstrates the different mixing
properties for the four branches. For the steady state the trac-
ers have not been mixed and the line is only weakly stretched
due to the velocity gradient within an eddy. As expected, the
mixing phenomenon becomes visible in the periodic regime,
but it is strongly enhanced for the quasiperiodic and for the
chaotic motion. In a comparison of the quasiperiodic with
the periodic regime it is remarkable that the mixing is much
stronger in the quasiperiodic case, though, due to a weaker
: ] forcing, the average velocity is much smallef. Fig. 2.

Py L l . ] In Fig. 9 the growth of the line element, a measure for the
0 50 100 150 200 stretching rate, is presented for a simulated time interval of
time At=2.0. The stretching corresponding to the steady state is
very small, so it has been droped here. It is recognizable that

FIG. 7. Six largest Lyapunov exponents versus integration timédoth the quasiperiodic and the chaotic motions lead to an
for f=1041(chaos ). exponential growth. In contrast, in the periodic regime the

FIG. 6. Streamlines of the steady state foundffer905 (steady
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X FIG. 8. Stretching of a line segment after a

finite time in four different dynamical regimes
(A, torus;B, steady II;,C, period Ill; D, chaos I).

stretching effect is much weaker, somewhere in betweeen iag upon control parameters such as the Reynolds number.
linear and an exponential growth. For instance, in a special parameter region of the celebrated

To evaluate the fractal properies of the line element, supkorenz system, representing a strongly truncation model of
posed to result from its successive stretching and folding, wReyleigh-B@ard convection, an infinite period-doubling cas-
estimated its Hausdorff dimension by means of a fast impleeade leads to chad®6]. Angelo and Rield27], as well as
mentation of a box-counting algorithm, which is based on a@ranceschini and Tebalf#], have found the same transition
specific data structur25]. For the time-dependent velocity to chaos via period-doubling bifurcations in low-mode trun-
fields (torus, period Ill, and chaos)lthe Hausdorff dimen- cations of the two-dimensional NSE with an external forcing
sion of the injected filament increases with time, whereas ibf the Kolmogorov type. Another route to chaos via a qua-
remains constantD,p=1, for the steady state. Table Il siperiodic motion, in which an attracting torus loses its
shows the Hausdorff dimensions for the different dynamicasmoothness, has been described by Franceschini in a gener-
regimes, calculated d@t=1.0. It turns out that the Hausdorff alization of this model including more modg28]. In con-
dimension is nearly the same for both the torus and the chdrast to these scenarios, quasiperiodic solutions can also un-
otic branch and is lower for the periodic solution. In general,dergo an infinite sequence of torus doublings on their way to
the differences in the values are not very significant and ithaos if a different forcing in the NSE is usgg]. All these
seems that the Hausdorff dimension, calculated at an arbgxamples should demonstrate the variety of bifurcation sce-
trary time point, does not provide a reliable quantitative meaharios in the transition to turbulence as well as that the be-
sure to distinguish between different dynamical regimes. Ihavior of each system has its specific character. We think
appears more promising to consider the time dependence tffat the investigated bifurcation behavior of our system of
Dy p or to look for saturation values & after long times.

But due to numerical limitations of the algorithm used as [ ‘ ‘ '
well as restricted computer time we have to shelve this ques 1.5x10°F
tion. I

Concluding, it can be stated that neither the length of line I
elements nor the Hausdorff dimension seems to be a suitab < - ox10°L
measure for the distinction of dynamical regimes in a simple & I
manner. The investigation of other measures is plannedto k%
part of forthcoming work. 5 ox10% -

V. DISCUSSION AND CONCLUSIONS [
0 L
We have investigated the dynamics of a two-dimensiona 0.0 0.5 1.0 15 20

fluid, for which an array of vortices is driven by an external
forcing, and have analyzed its bifurcations in the transition to
chaos. Each physical system, and in particular each hydro- FIG. 9. Time evolution of the line lengttthe lettering corre-
dynamical system shows its own specific bifurcations vary-sponds to that used in Fig).8

Time
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TABLE II. The estimated Hausdorff dimensions tat 1.0 for
the different regimes.

f Dhp
792 1.58
905 1
996 1.38
1041 1.66
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ditions lead to a special symmetry group, given by ),

with respect to which the partial differential equations stud-
ied [Egs. (1) and (2)] are equivariant. Obviously the first
bifurcations, leading to a heteroclinic cycle and afterward to
the appearance of Shilnikov-like chatsee Fig. 5, are di-
rectly related to the imposed symmetry. Therefore, these
phenomena cannot be expected to be observable in experi-
ments like those mentioned in Sec. I. But we think that the
nature of the solutions after the symmetry breaking, in par-
ticular of those belonging to the upper main branch in Fig. 2,
characterized by large-scale spatial structures, are influenced

driven vortices provides general insight into the dynamics ofnly @ little by the boundary conditions and thus admit a
two-dimensional Navier-Stokes flows, which are used tgPhysical interpretation. That the boundary conditions have

model experiments as described[i0—-14. A correctly de-

scribed feature is the appearance of long-wavelength inst
bilities, in which scales much larger than that of the forcing
are excited. These effects can be interpreted as a result of
property of two
dimensional Navier-Stokes flows. The same phenomeno
was observed by Guzdat al. [16], who studied a similar

inverse energy cascade, a typical

system, namely, a linear array of forced vorticex (4 coun-

terrotating vortices These authors also observed the appear-

only minor influence on the character of these solutions

&_ould be partially confirmed by preliminary test calculations

with stress-free boundary conditions on the top and bottom

gqundaries and periodicity in the horizontal directions. Yet a
‘more accurate study of the influence of different boundary

onditions, including the role of bottom friction, present in
the experiments and neglected in the this study remains to be
done and will be part of future investigations.
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