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Bifurcations and chaos in an array of forced vortices

R. Braun, F. Feudel, and N. Seehafer
Institut für Theoretische Physik und Astrophysik, Universita¨t Potsdam, Postfach 601553, D-14415 Potsdam, Germany

~Received 2 December 1996!

We have studied the bifurcation structure of the incompressible two-dimensional Navier-Stokes equations
with a special external forcing driving an array of 838 counterrotating vortices. The study has been motivated
by recent experiments with thin layers of electrolytes showing, among other things, the formation of large-scale
spatial patterns. As the strength of the forcing or the Reynolds number is raised the original stationary vortex
array becomes unstable and a complex sequence of bifurcations is observed. The bifurcations lead to several
periodic branches, torus and chaotic solutions, and other stationary solutions. Most remarkable is the appear-
ance of solutions characterized by structures on spatial scales large compared to the scale of the forcing. We
also characterize the different dynamic regimes by means of tracers injected into the fluid. Stretching rates and
Hausdorff dimensions of convected line elements are calculated to quantify the mixing process. It turns out that
for time-periodic velocity fields the mixing can be very effective.@S1063-651X~97!04606-0#

PACS number~s!: 47.20.Ky, 47.52.1j, 47.27.Cn, 47.54.1r
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I. INTRODUCTION

The transition from simple laminar to turbulent fluid m
tions upon changes of parameters such as the Reynolds
ber, though continually and intensively investigated
means of sophisticated experiments as well as analytic
and numerically, is still far from being completely unde
stood. The experiments exhibit a variety of different tran
tion scenarios and each of them requires its own theore
explanation.

For more than three decades efforts have been mad
analyze the bifurcation behavior of a special tw
dimensional viscous flow, the so-called Kolmogorov flo
and to understand its transition to chaos as the Reyn
number is raised. In the Kolmogorov flow, which is pr
duced by the forcing of just one Fourier mode, the velocity
everywhere parallel or antiparallel to a given direction p
pendicular to which it varies sinusoidally. An early analytic
estimation of its stability is due to Meshalkin and Sinai@1#.
A recent consideration of the stability problem including li
ear friction and confinement effects can be found in@2#.

A systematic investigation of the bifurcation structure
truncations to the two-dimensional incompressible Nav
Stokes equations~NSE’s! with an external forcing of the
Kolmogorov type is reported in a series of papers by Fran
schini and his co-workers@3–6#. Lee @7# studied a modified
version of the Kolmogorov flow, generated by forcing a d
ferent Fourier mode, and found a different scenario for
transition to chaos. The flow studied by Lee has recen
been systematically investigated by Feudel and Seeh
@8,9#, who applied special numerical bifurcation-analys
techniques.

The present paper is motivated by a number of exp
ments showing the formation of large-scale patterns in
proximately two-dimensional fluids, apparently as the res
of inverse energy cascades. So Sommeria@10# investigated
the transition to turbulence produced by instabilities in
square array of electrically driven vortices. In other expe
ments, Tabelinget al. @11–14# studied a linear chain o
forced vortices. They described the variations in the spa
551063-651X/97/55~6!/6979~6!/$10.00
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structure and in the temporal evolution of the flow resulti
from variations of the Reynolds number and modeled
observed phenomena by means of a one-dimensional c
of coupled oscillators. Numerical investigations based on
two-dimensional NSE and aimed at modeling these exp
ments were done by Finnet al. @15,16#. In particular with
respect to the first instabilities their results show qualitat
coincidences with the experimental observations.

In this paper we numerically examine the dynamics of
two-dimensional NSE with an external forcing driving a
array of vortices, focusing attention on the bifurcation beh
ior. In Sec. II we introduce equations and forcing and brie
describe the numerical method. Then in Sec. III we pres
the bifurcation scenario and explain the qualitative proper
of different dynamical branches. In Sec. IV we study t
Lagrangian dynamics and try to quantify the mixing proce
by suitable measures. Finally, Sec. V gives a short discus
of the role of the boundary conditions.

II. BASIC EQUATIONS AND FORCING

We study the incompressible two-dimensional NSE in
rescaled form

]v
]t

1~v•“ !v5¹2v2“p1f, ~1!

“•v50, ~2!

wherev is the fluid velocity field andp the thermal pressure
The external forcef is chosen to be

f5 f S sink1xcosk2y

2cosk1xsink2y
D . ~3!

Due to the rescaling of the NSE to typical length and tim
scales all quantities are nondimensional; the explicit form
the rescaling transformation may be found in Ref.@9#. The
two constants in Eq.~3! are fixed tok15k254, so that the
external force drives an array of 838 counterrotating eddies
For the sake of simplicity we impose periodic boundary co
6979 © 1997 The American Physical Society
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6980 55R. BRAUN, F. FEUDEL, AND N. SEEHAFER
ditions and consider the dynamics of the fluid on a squ
with the normalized side lengthL52p.

When using the rescaled form of the NSE with the forci
given by Eq.~3!, the scalarf in Eq. ~3!, which corresponds
to the strength of the forcing, is the only free parameter a
is used as bifurcation parameter. Its relation to the Reyno
number may be roughly estimated as follows. For a we
forcing the nondimensional velocity~a typical value of it! is
determined by a balance between the forcing and visc
terms in Eq.~1!, so thatv' l 2f , where l is the scale over
which f varies,l'1/Ak121k2

2. From the rescaled form of th
NSE one then obtains Re' l 3f for the Reynold number. Fo
strong forcing, on the other hand, the forcing term in Eq.~1!
is approximately balanced by the inertial term and one
pects Re' l 3/2f 1/2 to be a better estimate.

In our numerical computations we did not directly int
grate Eq.~1! but rather the corresponding equation for t
vorticity v5“3v. By the restriction to two spatial dimen
sions this equation is reduced to one scalar equation for
only nonvanishing componentv5vz :

]v

]t
1~v•“!v5¹2v1 f ~k11k2!sink1xsink2y. ~4!

For v a Fourier expansion according to

v5 (
kx ,kyPZ

v̂k~ t !e
i ~kxx1kyy!, k5~kx ,ky!, ~5!

is used, leading to an infinite system of ordinary different
equations for the real and imaginary parts of the Fou
componentsv̂k . We have numerically studied a finite
dimensional truncation of this system by means of a ps
dospectral method, using a dealiased code with a resolu
of 32332 grid points in real space.

FIG. 1. Streamlines forf5362 ~steady I!.
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III. BIFURCATION SCENARIO

Due to the periodic boundary conditions and the form
the forcing, Eqs.~1! and~4! are equivariant with respect to
special transformation group, which can be represented
semidirect sum@17# in the form

G5D41̇~Z43Z43Z2!, ~6!

whereD4 denotes the eight-element dihedral group,Z4 the
four-element cyclic group, andZ2 the reflection group. As
will be seen, the symmetry group has an essential influe
on the bifurcations.

For a weak forcing, i.e., for a small value off , the 838
array of counterrotating vortices~see Fig. 1! is the only time-
asymptotic state. Here only the forced modes are excited
the vorticity can be expressed analytically in the form

v~x,y!5
f

4
sin~4x!sin~4y!. ~7!

This steady solution is symmetric with respect to the wh
groupG, and by means of the patterns seen in Fig. 1
group structure is easily understood~note that neighboring
vortices have opposite sense of rotation!. The elements of
D4 correspond to rotations and reflections of the square
some cases combined with a shift byp/4 parallel to one of
the boundaries. The subgroupsZ4 andZ2, respectively, are
generated by pure translations, for which the pattern rem
invariant due to the periodicity.

In the following the bifurcations observed for increasin
the forcing parameterf as well as the resulting solutio
branches are described. An overview of the different solut
branches is given in Table I and a schematic bifurcation d
gram in Fig. 2. The primary steady state~steady I, described
above! loses its stability in a special bifurcation a

TABLE I. Different solution branches.

Branch Stability interval Remarks

steady I f,402.8 838 vortex array
cycles 402.8, f,610.9 heteroclinic cycles
chaos I 610.9, f,679 Shilnikov-like chaos
period I 679, f,803.3
torus 769.3, f,825.9
period II 825.9, f,857.6
steady II 857.6, f,961.7 large-scale steady sta
period III 961.7, f,1022.8
chaos II 1022.8, f

FIG. 2. Schematic bifurcation diagram.
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55 6981BIFURCATIONS AND CHAOS IN AN ARRAY OF . . .
f5402.8, where four real eigenvalues of the Jacobian ma
become zero. As a result of this symmetry-breaking bifur
tion an asymtotic heteroclinic cycle is born. This cycle co
sists of 16 unstable fixed points~steady states!, which are
connected by their stable and unstable manifolds. A pro
tion of the heteroclinic cycle onto the plane spanned by
real parts of two of the Fourier modes ofv is shown in Fig.
3. The fixed points are marked by filled circles, some of th
coinciding in the projection. In numerical simulations of th
long-term behavior we observed the trajectory to stay a lo
time in the vicinity of one of the fixed points and then
switch rapidly to the next one, in the course of this slow
approaching the heteroclinic orbit. Theoretically, the tim
period of the approximate cycle should go to infinity, but d
to numerical errors it tyipically reached maximum valu
T'104. In Fig. 4, for one of the fixed points in the cycle, th
velocity streamlines are shown. The original symmetry

FIG. 3. Projection of the heteroclinic cycle forf5475. Filled
circles mark the positions of fixed points.

FIG. 4. Streamlines forf5475 ~fixed point in the heteroclinic
cycle!
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partly broken. Symmetry breakings connected with the
pearance of heteroclinic cycles are a typical phenomeno
systems with symmetry@18#.

The heteroclinic orbits connecting the fixed points dom
nate the dynamics of the system in a large parameter ra
Then the cycle undergoes a complex bifurcation seque
which we did not investigated in detail. The cycle seems
decay into several smaller heteroclinic cycles. Atf5610.9
the system develops a chaotic dynamics~chaos I!; the calcu-
lation of the largest Lyapunov exponents yields one sligh
positive exponent. In Fig. 5 a projection of the trajectory fo
f5611 is shown. It is strongly indicative of a Shilnikov-typ
chaos. Also remnants of the heteroclinic cycle shown in F
3 are still visible. This behavior is found up tof5679, where
the dynamics of the chaotic attractor is replaced by a perio
motion ~period I!. The topological structure of the corre
sponding streamline portrait is similar to that in Fig. 4. F
increasing Reynolds number the basin of attraction of t
periodic branch shrinks and finally disapperars
f5803.3.
As is seen in Fig. 2, for higher Reynolds numbers anot

main branch dominates the dynamics of the system. So
have found a further steady state~steady II!, stable within the
parameter interval 857.6, f,961.7 and corresponding to
qualitatively different solution structure in physical spac
The velocity streamlines in Fig. 6 show that now motions
larger scales, comparable with the size of the system,
come dominant and determine the spatial structure of
flow. This branch was traced using continuation techniqu
both for decreasing and for increasing Reynolds numbers
both ends, atf5857.6 andf5961.7, Hopf bifurcations were
observed, leading to periodic orbits~period II and period III!.
With a further decrease off a secondary Hopf bifurcation
leads to a torus solution~torus!, which is stable only within a
small parameter interval and coexists partly with the perio
branch period I, which is characterized by small-scale spa
strucures.

When tracing the period III branch towards higher Re
nolds numbers, chaotic motions are observed forf.1022.8
~chaos II!. The occurrence of chaos has been verified
calculating the largest Lyapunov exponents for selected
ues of the bifurcation parameter, using an algorithm of S
mada and Nagashima@19#. Figure 7 shows forf51041 the
cumulative values of the six largest Lyapunov expone

FIG. 5. Projection of the trajectory forf5611 ~chaos I!.
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6982 55R. BRAUN, F. FEUDEL, AND N. SEEHAFER
in dependence on the integration time. A good convergen
is demonstrated, as well as that three of the exponents
positive.

One of the remaining open problems is the transition fro
the period III periodic branch to chaos. We could not resol
a periodic-doubling cascade and numerical experiments in
cated that in the vicinity of the transition point transien
chaos occurs. For a value of the bifurcation parame
slightly below the transition value, a trajectory starting in th
neighborhood of the chaotic set moves for a long time see
ingly chaotically, and then suddenly settles down to a pe
odic orbit. Such a behavior can be caused by a crisis@20#,
but more detailed investigations, such as the determination
a scaling law for the transient time, are still under way.

FIG. 6. Streamlines of the steady state found forf5905 ~steady
II !.

FIG. 7. Six largest Lyapunov exponents versus integration tim
for f51041 ~chaos II!.
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IV. MIXING AND LAGRANGIAN TURBULENCE

In this section we try to distinguish between different d
namic regimes by means of tracers injected into the flu
with the aim of making feasible a comparison of theoreti
results with experimental observations. For a steady flow
pathlines of tracers coincide with the streamlines and prov
a direct visualization of the velocity field. In the time
dependent regimes the situation is much more complica
The differential equations for the determination of the pa
lines is now nonautonomous,

ẋ5v~x,t !, ~8!

for the normal space variablesx. It is known that already for
simple periodic flows the pathlines can show a very com
cated, wrinkled, and chaotic form@21#, a phenomenon also
termed Lagrangian turbulence. The motion of tracers
jected into the fluid in the form of a blob or a straight line
the subject of the theory of mixing and transport process
Comprehensive overviews of this topic are given in t
monograph of Ottino@22# and in @23#.

Mixing consists basically of the stretching and folding
fluid elements, quantified by the stretching rate and by
Hausdorff dimension, respectively. The stretching of an
finitesimal line element leads two the definition of the larg
Lyapunov exponent. By contrast, we have studied
stretching properties of finite filaments. It is known that t
stretching rates of finite line elements are generally lar
than the largest Lyapunov exponent@24#, but there is a quali-
tative coincidence in that an exponential or polynomial~e.g.,
linear! growth with time is always common to both quan
ties.

In practice we injected a straight line of tracer particl
into the fluid and followed their time evolution by solvin
the NSE and Eq.~8! for the pathlines simultaneously. A
adaptive refinement technique has been used to get an
distant distribution of tracers on the line, limiting the max
mum number of particles to 105. Additionally, we calculated
the length of the line in every time step. These calculatio
were done for the large-scale steady state~steady II,
f5905), a periodic state~period III, f5996), the torus so-
lution ~torus, f5792), and a chaotic branch~chaos II,
f51041). The initial line element has the lengthl 050.3 and
has been placed near the center of the square.

Figure 8 shows the shape of this line after simulation o
time intervalDt51.0 and demonstrates the different mixin
properties for the four branches. For the steady state the
ers have not been mixed and the line is only weakly stretc
due to the velocity gradient within an eddy. As expected,
mixing phenomenon becomes visible in the periodic regim
but it is strongly enhanced for the quasiperiodic and for
chaotic motion. In a comparison of the quasiperiodic w
the periodic regime it is remarkable that the mixing is mu
stronger in the quasiperiodic case, though, due to a we
forcing, the average velocity is much smaller~cf. Fig. 2!.

In Fig. 9 the growth of the line element, a measure for
stretching rate, is presented for a simulated time interva
Dt52.0. The stretching corresponding to the steady stat
very small, so it has been droped here. It is recognizable
both the quasiperiodic and the chaotic motions lead to
exponential growth. In contrast, in the periodic regime t
e
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FIG. 8. Stretching of a line segment after
finite time in four different dynamical regime
(A, torus;B, steady II;C, period III;D, chaos II!.
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stretching effect is much weaker, somewhere in betweee
linear and an exponential growth.

To evaluate the fractal properies of the line element, s
posed to result from its successive stretching and folding,
estimated its Hausdorff dimension by means of a fast imp
mentation of a box-counting algorithm, which is based o
specific data structure@25#. For the time-dependent velocit
fields ~torus, period III, and chaos II! the Hausdorff dimen-
sion of the injected filament increases with time, wherea
remains constant,DHD51, for the steady state. Table
shows the Hausdorff dimensions for the different dynami
regimes, calculated att51.0. It turns out that the Hausdor
dimension is nearly the same for both the torus and the c
otic branch and is lower for the periodic solution. In gener
the differences in the values are not very significant an
seems that the Hausdorff dimension, calculated at an a
trary time point, does not provide a reliable quantitative m
sure to distinguish between different dynamical regimes
appears more promising to consider the time dependenc
DHD or to look for saturation values ofDHD after long times.
But due to numerical limitations of the algorithm used
well as restricted computer time we have to shelve this qu
tion.

Concluding, it can be stated that neither the length of l
elements nor the Hausdorff dimension seems to be a suit
measure for the distinction of dynamical regimes in a sim
manner. The investigation of other measures is planned t
part of forthcoming work.

V. DISCUSSION AND CONCLUSIONS

We have investigated the dynamics of a two-dimensio
fluid, for which an array of vortices is driven by an extern
forcing, and have analyzed its bifurcations in the transition
chaos. Each physical system, and in particular each hy
dynamical system shows its own specific bifurcations va
a
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e
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e
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ing upon control parameters such as the Reynolds num
For instance, in a special parameter region of the celebr
Lorenz system, representing a strongly truncation mode
Reyleigh-Bénard convection, an infinite period-doubling ca
cade leads to chaos@26#. Angelo and Riela@27#, as well as
Franceschini and Tebaldi@4#, have found the same transitio
to chaos via period-doubling bifurcations in low-mode tru
cations of the two-dimensional NSE with an external forci
of the Kolmogorov type. Another route to chaos via a qu
siperiodic motion, in which an attracting torus loses
smoothness, has been described by Franceschini in a g
alization of this model including more modes@28#. In con-
trast to these scenarios, quasiperiodic solutions can also
dergo an infinite sequence of torus doublings on their way
chaos if a different forcing in the NSE is used@9#. All these
examples should demonstrate the variety of bifurcation s
narios in the transition to turbulence as well as that the
havior of each system has its specific character. We th
that the investigated bifurcation behavior of our system

FIG. 9. Time evolution of the line length~the lettering corre-
sponds to that used in Fig. 8!.
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driven vortices provides general insight into the dynamics
two-dimensional Navier-Stokes flows, which are used
model experiments as described in@10–14#. A correctly de-
scribed feature is the appearance of long-wavelength in
bilities, in which scales much larger than that of the forci
are excited. These effects can be interpreted as a result
inverse energy cascade, a typical property of tw
dimensional Navier-Stokes flows. The same phenome
was observed by Guzdaret al. @16#, who studied a similar
system, namely, a linear array of forced vortices (431 coun-
terrotating vortices!. These authors also observed the appe
ance of long wavelengths as a result of an instability, wh
they called shear instability. A common feature of both s
tems is that at higher Reynolds numbers the large sc
dominate the dynamics of the flow.

In conclusion, we add a few remarks about the role of
boundary conditions for the bifurcations and the characte
the resulting solution branches. The periodic boundary c

TABLE II. The estimated Hausdorff dimensions att51.0 for
the different regimes.

f DHD

792 1.58
905 1
996 1.38
1041 1.66
f
o

ta-

an
-
n

r-
h
-
es

e
f
n-

ditions lead to a special symmetry group, given by Eq.~6!,
with respect to which the partial differential equations stu
ied @Eqs. ~1! and ~2!# are equivariant. Obviously the firs
bifurcations, leading to a heteroclinic cycle and afterward
the appearance of Shilnikov-like chaos~see Fig. 5!, are di-
rectly related to the imposed symmetry. Therefore, th
phenomena cannot be expected to be observable in ex
ments like those mentioned in Sec. I. But we think that
nature of the solutions after the symmetry breaking, in p
ticular of those belonging to the upper main branch in Fig
characterized by large-scale spatial structures, are influen
only a little by the boundary conditions and thus admit
physical interpretation. That the boundary conditions ha
only minor influence on the character of these solutio
could be partially confirmed by preliminary test calculatio
with stress-free boundary conditions on the top and bott
boundaries and periodicity in the horizontal directions. Ye
more accurate study of the influence of different bound
conditions, including the role of bottom friction, present
the experiments and neglected in the this study remains t
done and will be part of future investigations.
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